

(Mouse) Smarcc1 Antibody (C-term)

Catalog_no : AB3420 **Reactivity** : H, M, Rat Category : 抗原抗体 Size : 100µL/50µL Immunogen : HUMAN This (Mouse) Smarcc1 antibody is generated from a rabbit immunized with a KLH Specificity : conjugated synthetic peptide between 783-817 amino acids from the C-terminal region of Mouse Smarcc1. **Dilution**: WB,1:2000; SWI/SNF complex subunit SMARCC1, BRG1-associated factor 155, SWI/SNF complex 155 Other_name : kDa subunit, SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily C member 1, SWI3-related protein, BAF155, Smarcc1, Baf155, Srg3 Rabbit Ig Isotype : Involved in transcriptional activation and repression of select genes by chromatin Background : remodeling (alteration of DNA-nucleosome topology). May stimulate the ATPase activity of the catalytic subunit of the complex. Also involved in vitamin D-coupled transcription regulation via its association with the WINAC complex, a chromatin-remodeling complex recruited by vitamin D receptor (VDR), which is required for the ligand-bound VDRmediated transrepression of the CYP27B1 gene (By similarity). Belongs to the neural progenitors-specific chromatin remodeling complex (npBAF complex) and the neuronspecific chromatin remodeling complex (nBAF complex). During neural development a switch from a stem/progenitor to a post-mitotic chromatin remodeling mechanism occurs as neurons exit the cell cycle and become committed to their adult state. The transition from proliferating neural stem/progenitor cells to post-mitotic neurons requires a switch in subunit composition of the npBAF and nBAF complexes. As neural progenitors exit mitosis and differentiate into neurons, npBAF complexes which contain ACTL6A/BAF53A and PHF10/BAF45A, are exchanged for homologous alternative ACTL6B/BAF53B and DPF1/BAF45B or DPF3/BAF45C subunits in neuron- specific complexes (nBAF). The npBAF complex is essential for the self-renewal/proliferative capacity of the multipotent neural stem cells. The nBAF complex along with CREST plays a role regulating the activity of genes essential for dendrite growth. reference : Jeon S.H., et al.J. Exp. Med. 185:1827-1836(1997). Kim J.K., et al.Mol. Cell. Biol.

eference : Jeon S.H.,et al.J. Exp. Med. 185:1827-1836(1997). Kim J.K.,et al.Mol. Cell. Biol. 21:7787-7795(2001). Lessard J.,et al.Neuron 55:201-215(2007). Sweet S.M.,et al.Mol. Cell. Proteomics 8:904-912(2009). Park J.,et al.Mol. Cell 50:919-930(2013).